Selasa, 25 Desember 2012

Fakta-Fakta Menarik Mengenai Pi

Pada tahun 1706, seorang ahli Matematika bahasa Inggris memperkenalkan abjad Yunani pi untuk mewakili nilai yang dikatakan. Namun, pada tahun 1737, Euler resmi mengadopsi simbol ini untuk mewakili bilangan.
Pada tahun 1897, legislatif dari Indiana mencoba menentukan nilai yang paling akurat untuk pi. Namun ternyata kebijakan ini tidak berhasil.
Sebagian besar orang pada waktu itu tidak mengetahui fakta bahwa lingkaran memiliki jumlah sudut yang tak terbatas. Nilai dari pi adalah banyaknya diameter lingkaran yang akan dipaskan dengan keliling lingkaran.
Nilai dari pi adalah 22 / 7 dan ditulis sebagai = 22 / 7 atau = 3,14.
Nilai pi dengan 100 tempat desimal pertama adalah: 3,1415926535897932384626433832 79502884197169399375 105820974944
592307816406286208998628034825 3421170679…
Fakta menarik lainnya adalah Anda tidak akan menemukan nol dalam 31 digit pertama dalam dari pi.
Di samping perhitungan geometri sehari-hari, nilai pi juga digunakan dalam berbagai persamaan ilmiah termasuk rekayasa genetika, mengukur reaksi, distribusi normal, dan sebagainya.
Tahukah Anda bahwa pi tidak hanya sebuah nomor irasional tetapi juga bilangan yang sulit dipahami?
Fakta menarik lainnya tentang pi diambil dari huruf Yunani “Piwas”. Itu juga merupakan Abjad Yunani yang ke-16.
Seorang pengusaha di Cleveland, AS, menerbitkan buku pada pada tahun 1931 untuk mengumumkan bahwa nilai pi adalah 256/81.
Jika Anda mencetak miliaran dari desimal pi, maka angka itu akan merentang dari New York City ke Kansas.
Fakta-Fakta Menarik Lainnya Lagi Mengenai Pi
Tahukah Anda Yasumasa Kanada, seorang profesor di Universitas Tokyo?? Ia membutukan waktu sekitar 116 jam untuk menemukan sebanyak 6442450000 tempat desimal Pi dengan komputer.
Pada tahun 1706, John Machin memperkenalkan suatu rumus untuk menghitung nilai pi, yaitu :
/ 4 = 4 * arc tan (1 / 5) - arc tan (1 / 239).
Pada tahun 1949, ia juga menghabiskan waktu sekitar 70 jam untuk menghitung 2.037 tempat desimal pi menggunakan ENIAC (Electronic Numeric Integrator and Computer).
Seorang Ahli Matematika Jerman, Ludolph van Ceulen, mendedikasikan seluruh hidupnya untuk menghitung 35 tempat desimal pertama pi.
Pada tahun 1768, Johann Lambert membuktikan nilai Pi adalah sebuah bilangan irasional, dan pada tahun 1882, Ferdinand Lindemann yang juga Ahli matematika terkenal membuktikan Pi adalah bilangan yang sulit dipahami.
Ada orang yang hafal semua angka desimal pi. Orang tersebut membuat lagu dan musik berdasarkan digit dari pi. Dalam kehidupan ini, memang terdapat banyak fakta yang menarik dan menyenangkan mengenai pi.

Something Wrong

Tak seharusnya ada pertengkaran diantara kita ..
Jangan libatkan emosi dalam masalah ini,
Bersikaplah dewasa Sahabatku, Saudaraku..

Asal Muasal Pi = 3,14….

Mungkin ini adalah bilangan ghoib pertama dalam matematika yang diajarkan saat qt SD. Tahukah kmu klo sebenarnya Pi ini adalah panjang keliling lingkaran yang berdiameter 1 satuan.
Jadi… misalkan qt punya roda yang diameternya 1 meter trus qt ukur kelilingnya dengan cara melekatkan seutas tali pada sekeliling roda tersebut, maka panjang tali yang dibutuhkan adalah sekitar 3.14159 meter. Nilai perbandingan antara keliling dan diameter lingkaran ini selalu konstan untuk setiap lingkaran yaitu 3.14159. Pi juga biasanya diartikan sebagai 1 putaran penuh lingkaran atau 2 pi = 360derajat.
Note:
- Pi bukan phi , klo phi tu gelombang ratio
- 360 derajat = 2 pi Radian, jadi 180 derajat tu 1 pi radian gan..
22/7 itu angka yang mendekati pi, tapi bukan pi, pi sebenarnya 3,1415926535897932384626433832 7…

Minggu, 02 September 2012

10 angka atau bilangan paling seksi

Fakta Unik tentang Matematika
Di bawah ini disajikan 10(sepuluh) bilangan sangat berpengaruh dalam melakukan perhitungan, pada khususnya, dan dalam matematika pada umumnya. Angka atau bilangan ini mempunyai karakteristik tertentu, yang unik sehingga dapat masuk digolongkan sebagai angka atau bilangan paling seksi.Pemenang (10 besar) adalah:
1. Angka 0 (nol) menduduki posisi pertama. Tidak ada angka yang mengalami perjuangan begitu lama sebelum diakui keberadaannya selain angka nol.
2. Bilangan phi. Apa jadinya jika tidak ada bilangan ini. Sulit menghitung luas, dengan akurasi tinggi, untuk bentuk-bentuk yang mengandung lengkungan terutama lingkaran.
3. Bilangan e, besarnya 2,7182…, adalah dasar (base) logaritma natural; limit (1+1/n)n terus meningkat sampai tak-terhingga.
4. Bilangan imajiner, i. Guna menemukan nilai x dari persamaan x² + 1 = 0, tidaklah mungkin menemukan x sebagai bilangan riil, namun muncul sebagai bilangan imajiner yang dilambangkan dengan i dengan besar √-1.
5. √2. Hasil akar dua adalah 1,414214….
6. Angka 1, karena semua bilangan apabila dikalikan satu hasilnya adalah bilangan itu sendiri
7. Angka 2 adalah satu-satunya bilangan genap yang termasuk bilangan prima
8. Gamma dari Euler Konstanta Euler
9. Konstanta Chaitin disebutkan banyak kemungkinan bahwa algoritma yang dipilih secara random akan membuat suatu komputer hang
10.Bilangan И0 (Aleph naugh) adalah bilangan transfinite. Matematikawan memberi notasi И0 untuk bilangan rasional tak-terhingga (infinite). Ada hubungan antara bilangan ini dengan bilangan irrasional tak-terhingga (infinite) yang diberi notasi C dalam bentuk C = 2И0. Hipotesis kontinuum dinyatakan sebagai C = И1.

(Diambil dari: http://portalunique.blogspot.com/)

Bilangan Fibonacci

Dalam matematika, bilangan Fibonacci adalah barisan yang didefinisikan secara rekursif sebagai berikut:



Penjelasan: barisan ini berawal dari 0 dan 1, kemudian angka berikutnya didapat dengan cara menambahkan kedua bilangan yang berurutan sebelumnya. Dengan aturan ini, maka barisan bilangan Fibonaccci yang pertama adalah:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946...

Barisan bilangan Fibonacci dapat dinyatakan sebagai berikut: Fn = (x1^n - x2^n)/ sqrt(5) dengan :

=> Fn adalah bilangan Fibonacci ke-n
=>x1 dan x2 adalah penyelesaian persamaan x^2-x-1=0

Perbandingan antara Fn+1 dengan Fn hampir selalu sama untuk sebarang nilai n dan mulai nilai n tertentu, perbandingan ini nilainya tetap. Perbandingan itu disebut Golden Ratio yang nilainya mendekati 1,618.


Berdasarkan buku The Art of Computer Programming karya Donald E. Knuth, barisan ini pertama kali dijelaskan oleh matematikawan India, Gopala dan Hemachandra pada tahun 1150, ketika menyelidiki berbagai kemungkinan untuk memasukkan barang-barang ke dalam kantong. Di dunia barat, barisan ini pertama kali dipelajari oleh Leonardo da Pisa, yang juga dikenal sebagai Fibonacci (sekitar 1200), ketika membahas pertumbuhan ideal dari populasi kelinci.


Pengaturan lantai dengan kotak berukuran bilangan Fibonacci

Apa yang Kalian Ketahui Tentang Matematika?

Apakah itu matematika?
Pengertian matematika sangat sulit didefinsikan secara akurat. Pada umumnya orang awam hanya mengetahui satu cabang matematika elementer yang disebut aritmatika atau ilmu hitung yang secara informal dapat didefinisikan sebagai ilmu tentang berbagai bilangan yang bisa langsung diperoleh dari bilangan-bilangan bulat 0, 1, -1, 2, – ...
2, …, dst, melalui beberapa operasi dasar: tambah, kurang, kali dan bagi.
Matematika berasal dari bahasa yunani adalah studi besaran, struktur, ruang, dan perubahan. Para matematikawan mencari berbagai pola, merumuskan konjektur baru, dan membangun kebenaran melalui metode deduksi yang kaku dari aksioma-aksioma dan definisi-definisi yang bersesuaian.
Terdapat perselisihan tentang apakah objek-objek matematika seperti bilangan dan titik hadir secara alami, atau hanyalah buatan manusia. Seorang matematikawan Benjamin Peirce menyebut matematika sebagai "ilmu yang menggambarkan simpulan-simpulan yang penting". Di pihak lain, Albert Einstein menyatakan bahwa "sejauh hukum-hukum matematika merujuk kepada kenyataan, mereka tidaklah pasti; dan sejauh mereka pasti, mereka tidak merujuk kepada kenyataan."
Matematika selalu berkembang, misalnya di Cina pada tahun 300 SM, di India pada tahun 100 M, dan di Arab pada tahun 800 M, hingga zaman Renaisans, ketika temuan baru matematika berinteraksi dengan penemuan ilmiah baru yang mengarah pada peningkatan yang cepat di dalam laju penemuan matematika yang berlanjut hingga kini.
Kini, matematika digunakan di seluruh dunia sebagai alat penting di berbagai bidang, termasuk ilmu alam, teknik, kedokteran/medis, dan ilmu sosial seperti ekonomi, dan psikologi. Matematika terapan, cabang matematika yang melingkupi penerapan pengetahuan matematika ke bidang-bidang lain, mengilhami dan membuat penggunaan temuan-temuan matematika baru, dan kadang-kadang mengarah pada pengembangan disiplin-disiplin ilmu yang sepenuhnya baru, seperti statistika dan teori permainan.

Kamis, 21 Juni 2012

Matematika Berkata Cinta

Banyak orang menganggap matematika sangat-sangat membosankan. Apalagi kalau kita lihat dari soal-soal matematika saja maka kita akan dapatkan matematika itu seperti hantu!
Nah , kali ini saya posting PUISI CINTA MATEMATIKA mudah-mudahan dengan sedikit warna puisi matematika ini dapat menjadikan matematika sebagai sesuatu yang menyenangkan! bukan sebagai seuatu yang hanya hitung menghitung (anggapan sebagian orang). Langsung saja isi puisi ciptaan BiBi Busrol Javaboy adalah sebagai berikut :


Rasa sayangku padamu bagaikan bilangan positif..
Tak memiliki ujung bak lingkaran..
Begitu besar bagai bilangan berpangkat tak terhingga..
Takkan terbagi-bagi laksana bilangan pirma..

Engkau begitu istimewa, seistimewa bilangan kelipatan 9..
Bila tak di sampingmu ku merasa kosong..
Tak menentu bagaikan bilangan imajiner..


Cintaku selalu tegak, setegak garis singgung lingkaran terhadap jari-jarinnya...
Akan selalu utuh, seutuh bilangan bulat....
Takkan terpecah bagai bilangan cacah.....
Ku harap... rasa sayangku dan sayangmu bagaikan sisi bujur sangkar...
Memiliki besar cinta yang sama seperti sudut-sudut segitiga sama sisi...
Tak berliku-liku bagai metode sinus cosinus......

Sabtu, 19 Mei 2012

Bilangan

Bilangan adalah suatu konsep matematika yang digunakan untuk pencacahan dan pengukuran. Simbol ataupun lambang yang digunakan untuk mewakili suatu bilangan disebut sebagai angka atau lambang bilangan. Dalam matematika, konsep bilangan selama bertahun-tahun lamanya telah diperluas untuk meliputi bilangan nol, bilangan negatif, bilangan rasional, bilangan irasional, dan bilangan kompleks.
Prosedur-prosedur tertentu yang mengambil bilangan sebagai masukan dan menghasil bilangan lainnya sebagai keluran, disebut sebagai operasi numeris. Operasi uner mengambil satu masukan bilangan dan menghasilkan satu keluaran bilangan. Operasi yang lebih umumnya ditemukan adalah operasi biner, yang mengambil dua bilangan sebagai masukan dan menghasilkan satu bilangan sebagai keluaran. Contoh operasi biner adalah penjumlahan, pengurangan, perkalian, pembagian, dan perpangkatan. Bidang matematika yang mengkaji operasi numeris disebut sebagai aritmetika.
Angka, bilangan, dan nomor
Dalam penggunaan sehari-hari, angka dan bilangan dan nomor seringkali disamakan. Secara definisi, angka, bilangan, dan nomor merupakan tiga entitas yang berbeda.
Angka adalah suatu tanda atau lambang yang digunakan untuk melambangkan bilangan. Contohnya, bilangan lima dapat dilambangkan menggunakan angka Hindu-Arab "5" (sistem angka berbasis 10), "101" (sistem angka biner), maupun menggunakan angka Romawi 'V'. Lambang "5", "1", "0", dan "V" yang digunakan untuk melambangkan bilangan lima disebut sebagai angka.
Nomor biasanya menunjuk pada satu atau lebih angka yang melambangkan sebuah bilangan bulat dalam suatu barisan bilangan-bilangan bulat yang berurutan. Misalnya kata 'nomor 3' menunjuk salah satu posisi urutan dalam barisan bilangan-bilangan 1, 2, 3, 4, ..., dst. Kata "nomor" sangat erat terkait dengan pengertian urutan.
Jenis bilangan-bilangan Sederhana
Ada berbagai jenis bilangan. Bilangan-bilangan yang paling dikenal adalah bilangan bulat 0, 1, -1, 2, -2, ... dan bilangan-bilangan asli 1, 2, 3, ..., keduanya sering digunakan untuk berhitung dalam aritmatika. Himpunan semua bilangan bulat dalam buku-buku teks aljabar biasanya dinyatakan dengan lambang Z dan sedangkan himpunan semua bilangan asli biasanya dinyatakan dengan lambang N.
Setiap bentuk rasio p/q antara dua bilangan bulat p dan bilangan bulat tak nol q disebut bilangan rasional atau pecahan. Himpunan semua bilangan rasional ditandai dengan Q.

Kamis, 17 Mei 2012

Sejarah dan Perkembangan Aljabar Matematika

Aljabar adalah cabang matematika yang mempelajari struktur, hubungan dan kuantitas. Untuk mempelajari aljabar, digunakan simbol untuk merepresentasikan bilangan secara umum sebagai sarana penyederhanaan dan alat bantu memecahkan masalah.
Aljabar sudah digunakan matematikawan sejak ribuan tahun yang lalu. Asal mula aljabar dapat ditelusuri dari Babilonia Kuno yang mengembangkan sistem matematika yang cukup rumit. Mereka sudah dapat mengaplikasikan rumus dan menghitung solusi untuk nilai yang tidak diketahui dengan menggunakan persamaan linier, persamaan kuadrat dan persamaan linier tak tentu. Sebaliknya, bangsa Mesir dan kebanyakan bangsa India, Yunani, serta Cina masih menggunakan metode geometri untuk memecahkan persamaan, misalnya seperti yang terdapat dalam “The Rhind Mathematical Papyrus”, “Sulba Sutras”, “Euclid’s Elements” dan “The Nine Chapters on the Mathematical Art”. Orang-orang Mesir menggunakan kata ‘heap’ untuk mewakili bilangan yang tidak diketahui.
Sekitar tahun 300 SM, seorang sarjana Yunani Kuno, Euclid menulis buku yang berjudul ‘Elements’. Dalam buku ini, terdapat rumus aljabar yang dikembangkan dengan mempelajari bentuk-bentuk geometris. Orang-orang Yunani Kuno biasanya menuliskan permasalahan secara lengkap jika permasalahan tidak dapat dipecahkan dengan metode geometri. Cara ini disebut ‘aljabar retoris’ yang membatasi kemampuan mereka untuk memecahkan masalah yang mendetail.
Seiring perkembangan zaman, pada abad ke-3, Diophantus of Alexandria (250 M) menulis buku berjudul Aritmatika, yang menggunakan simbol-simbol untuk bilangan yang tidak diketahui dan untuk operasi seperti penjumlahan dan pengurangan. Sistemnya tidak sepenuhnya dalam bentuk simbol, tetapi berada diantara sistem Euclid dan apa yang digunakan sekarang. Hal ini dikenal dengan ‘aljabar sinkopasi’.
Ketika agama Islam mulai muncul pada abad ke-6, terjadi perang antar agama untuk menundukkan daerah Yahudi, Khatolik dan Nasrani mulai gencar dilakukan oleh umat muslim. Sehingga pada tahun 641 M, bangsa Arab berhasil menguasai Alexandria dan menutup sekolah Yunani Kuno terakhir. Namun, ide-ide bangsa Yunani tetap dipertahankan bahkan dikembangkan, dan kemudian dibawa ke Eropa Barat setelah menduduki Spanyol pada tahun 747 M.
Bangsa Arab pertama kali menemukan ide-ide ketika bertemu dengan dokter-dokter Yunani yang bekerja di Arab. Dua orang sarjana yang terkenal adalah Brahmagupta (598-660) dan Aryabhata (475-550). Brahmagupta adalah seorang astronom yang banyak menemukan ciri-ciri untuk luas dan volume benda padat. Sedangkan Aryabhata adalah seorang ilmuan yang menciptakan tabel sinus (rasio-rasio istimewa) dan mengembangkan sebuah bentuk aljabar sinkopasi seperti sistem yang dibuat Diophantus.
Lambat laun, bangsa Arab mulai mengenal teori yang dimiliki negara jajahan tersebut. Mereka mulai mengembangkannya dengan cara mereka sendiri. Kemudian munculah tokoh yang menemukan teori aljabar, Al-Khwarizmi (780-850), seorang muslim keturunan Usbekistan yang lahir pada tahun 780 M/194 H. Al-Khwarizki merupakan seorang tokoh islam yang berpengetahuan luas. Pengetahuan dan kemahirannya tidak hanya di bidang syariat, tetapi juga dalam bidang falsafah, logika, aritmetik, geometri, musik, sastra, sejarah islam dan ilmu kimia. Sekitar tahun 830 M, ia menulis tiga buku tentang matematika. Bukunya yang paling terkenal berjudul “Hisab al-Jabr wa’l Muqabalah” (perhitungan dengan restorasi dan reduksi). Restorasi maksudnya menyederhanakan sebuah rumus dengan menggunakan operasi yang sama di kedua sisinya. Sedangkan reduksi berarti mengkombinasikan bagian-bagian yang berbeda dari sebuah rumus dan kemudian menyederhanakannya. Al-Khwarizmi juga menciptakan pemakaian Secans dan Tangens dalam penyelidikan trigonometri dan astronomi. Dalam usia muda, ia telah bekerja di bawah pamerintahan Kehalifah al-Ma’mun, daerah Bayt al-Hikmah di Baghdad. Al-Khwarizmi bekerja dalam sebuah observatory. Al-Khwarizmi juga dipercaya memimpin perpustakaan khalifah.
Sebelum karya Al-Khwarizmi yang berjudul “Hisab al-Jabr wa’l Muqabalah” muncul, kata aljabar tidak pernah digunakan. Istilah ‘Aljabar’ berasal dari bahasa arab ‘al-jabr’ yang berasal dari kitab ‘Al-Kitab al-Jabr wa-l-Muqabala’ (The Compendious Book on Calculation by Completion and Balancing) yang ditulis oleh Al-Khwarizmi. kata ‘Al-Jabr sendiri sebenarnya berarti penggabungan. Bahkan jika dilihat dari sejarahnya, matematikawan Yunani pada zaman Hellenisme, Diophantus, secara tradisional telah mengenal konsep aljabar, hanya saja mereka tidak menggunakan istilah tersebut untuk teori yang mereka miliki.
Seperti halnya Al-Khwarizmi, Diophantus juga dikenal sebagai ‘Bapak Aljabar’ walaupun sampai sekarang masih diperdebatkan siapa yang berhak atas gelar tersebut. Pendukung Al-Khwarizmi menunjukkan fakta bahwa hasil karyanya pada prinsip reduksi masih digunakan sampai sekarang, dan ia juga memberikan penjelasan yang rinci mengenai penyelesaian persamaan kuadratik. Sedangkan pendukung Diophantus menunjukkan Aljabar yang ditemukan dalam Al-Jabr adalah masih sangat dasar dibandingkan Aljabar yang ditemukan dalam ‘Arithmetica’, karya Diophantus. Matematikawan Persia lain, Omar Khayyam membangun Aljabar Geometri dan menemukan bentuk umum geometri dari persamaan kubik. Matematikawan India Mahavira dan Bhaskara, serta matematikawan Cima, Zhu Shiie juga berhasil memecahkan berbagai macam persamaan kubik, kuartik, kuintik dan polinom tingkat tinggi lainnya.
Peristiwa penting lain adalah perkembangan lebih lanjut dari aljabar yang terjadi pada abad ke-16. Ide tentang determinan yang dikembangkan oleh matematikawan Jepang, Kowa Seki di abad ke-17, diikuti oleh Gottfried Leibniz sepuluh tahun kemudian, untuk memecahkan Sistem Persamaan Linier secara simultan menggunakan matriks. Gabriel Cramer juga menyumbangkan hasil karyanya tentang Matriks dan Determinan pada abad ke-18. Aljabar Abstrak dikembangkan pada abad ke-19, mula-mula berfokus pada teori Galois dan pada masalah keterkonstruksian.
Aljabar kemudian diklasifikasikan menjadi beberapa kategori, yaitu :
1.       Aljabar Elemanter, aljabar yang mempelajari sifat-sifat operasi pada bilangan riil dengan simbol sebagi konstanta dan variabel, dan aturan yang membangun ekspresi dan persamaan matematika yang melibatkan simol-simbol.
2.       Aljabar Abstrak (Aljabar Modern), aljabar yang mempelajari struktur Aljabar yang didefinisikan dan diajarkan secara aksiomatis.
3.       Aljabat Linie, aljabar yang mempelajari sifat-sifat khusus dari Ruang Vektor.
4.       Aljabar Universal, aljabar yang mempelajari sifat-sifat bersama dari semua struktur aljabar.

Sejarah dan Perkembangan Bilangan Prima

Dalam sejarah awal perkembangannya, pengertian bilangan prima adalah bagian dari himpunan bilangan bulat positif lebih dari 1 dan hanya mempunyai dua faktor, yaitu 1 dan bilangan itu sendiri. Jika definisinya diperluas menjadi himpunan bilangan bulat, maka dikenal bilangan prima negatif dan bilangan prima positif. Bilangan-bilangan selain bilangan prima disebut bilangan komposit. Cara yang paling sederhana untuk menentukan bilangan prima dalam suatu rentang tertentu adalah dengan menggunakan Sieve of Erastosthenes (Saringan Erastothenes). Bilangan prima dapat disebut sebagai batu pembangun bilangan bulat positif seperti yang sudah dibuktukan dalam Teorema Fundamental Aritmetik.

Dalam beberapa usaha penemuan yang bertujuan mengkaji hubungan antar bilangan prima, dikenal pula bilangan prima kembar (twin primes) yang merupakan pasangan bilangan prima yang memenuhi kaidah p dan p+2 dengan p adalah bilangan prima. Sebagai contoh, 3 dan 5, 11 dan 13, 29 dan 31.
Sejarah bilangan prima dimulai pada zaman Mesir Kuno dengan ditemukannya sebuah catatan yang menyatakan penggunaan bilangan prima pada zaman tersebut. Namun, bilangan prima dan komposit pada saat itu berbeda dengan bilangan prima dan komposit yang kita kenal sekarang. Bukti lain permulaan sejarah bilangan prima adalah sebuah catatan penelitian bilangan prima oleh bangsa Yunani Kuno.

Dalam sejarah Yunani Kuno, Pythagoras (570 SM-500 SM) terkenal melalui ‘Theorem of Pythagoras’ dan memunculkan Pythagorean Triples yang sebenarnya sudah ada sejak 1000 tahun sebelum masa Pythagoras. Sebelumnya, bangsa Babilonia telah mengenal Pythagorean Triples tersebut dengan nama Babylonian triples. Babylonian Triples terdapat dalam Plimpton 322 yang diperkirakan berasal dari tahun 1900 SM. Terdapat perbedaan antara Pythagorean Triples dengan Babylonian Triples. Pada Babylonian Triples disyaratkan bahwa u dan v sebagai generator 2uv, u2-v2 dan u2+v2 yang merupakan ukuran sisi-sisi segitiga siku-siku, harus relatif prima dan tidak mempunyai faktor prima selain 2, 3 atau 5. Sebagai contoh, 56, 90 dan 106 adalah Babylonian Triples karena u=9 dan v=5. Contoh lain, 28, 45 dan 53 adalah Pythagorean Triples, tetapi bukan Babylonian Triples karena u=7 dan u memiliki faktor prima 7.
Bilangan prima dalam Rumusan Bilangan Sempurna terdapat pada karya Euclid dalam buku IX Elements (300 SM) yang berisi beberapa teorema penting mengenai bilangan prima, termasuk ketakberhinggaan bilangan prima dan teorema fundamental aritmatik. Euclid juga memperlihatkan cara menyusun sebuah bilangan sempurna (perfect number) dari sebuah bilangan prima Mersenne yang ditemukan kemudian. Bilangan prima Mersenne adalah sebuah bilangan prima dengan rumus Mn=2n-1. Dalam karya Euclid tersebut, terdapat proporsi bahwa ‘jika 2n-1 adalah bilangan prima maka (2n-1)+(2n-1) adalah bilangan sempurna. Pada masa itu, bangsa Yunani telah menemukan 4 bilangan sempurna, yaitu 6, 28, 496 dan 8128. Berkaitan dengan bilangan sempurna, sekitar 2000 tahun kemudian seorang matematikawan, Euler pada tahun 1947 telah mampu menunjukkan bahwa semua bilangan sempurna adalah genap. Hal ini disebut Konjektur Goldbach. Dalam Konjektur Goldbach, berbunyi ‘setiap bilangan bulat genap lebih besar dari atau sama dengan 4 dapat ditulis sebagai jumlah dari dua bilangan prima’. Konjektur Goldbach adalah salah satu persoalan yang belum terpecahkan dalam teori angka dan bahkan dalam matematika secara keseluruhan. Konjektur Goldbach pertama kali disebut oleh Christian Goldbach dalam suratnya kepada Euler pada tahun 1942. Dalam suratnya, Goldbach mengemukakan bahwa bilangan genap lebih dari atau sama dengan 4 dapat ditulis sebagai hasil penjumlahan dua bilangan prima, tetapi dia tidak berhasil membuktikan kebenarannya.

Pada teorema ke-20 dari buku IX The Elements Euclide menyatakan bahwa ‘tidak ada bilangan prima yang terakhir’. Pernyataan ini menunjukkan ketakberhinggaan bilangan prima yang dibuktikan Euclid dengan menggunakan cara pembuktian kontradiksi, yang merupakan pertama kali dalam sejarah matematika. Selain itu, Euclid juga memberikan bukti Teorema Fundamental Aritmetika, yaitu ‘setiap bilangan bulat dapat ditulis sebagai hasil kali bilanngan-bilangan prima dalam sebuah bentuk dasar yang unik’.
Bukti selanjutnya adalah Sieve of Eratosthenes (Saringan Eratosthenes), yaitu cara untuk menentukan bilangan prima dalam suatu rentang tertentu. Saringan ini ditemukan oleh Eratosthenes, seorang ilmuan Yunani Kuno. Eratosthenes lahir di Cyrene (Libya), tetapi bekerja dan meninggal di Alexandria. Dia tidak pernah menikah dan dikenal sombong. Dia belajar di Alexandria dan untuk beberapa tahun di Athena. Pada 236 SM, ia ditunjuk oleh Ptolemy III Euergetes I sebagai pustakawan Perpustakaan Alexandria, menggantikan Zenodotos. Sekitar tahun 255 SM, ia menciptakan bola armilar yang digunakan secara luas hingga diciptakannya oreri pada abad 18. Pada 195 SM, ia mengalami kebutaan dan selama setahun membiarkan dirinya kelaparan hingga meninggal. Ia dicatat oleh Cleomedes dalam On the Circular Motions of the Celestial Bodies sebagai orang yang telah menghitung keliling Bumi pada tahun 240 SM, menggunakan metode trigonometri dan pengetahuan mengenai sudut kemiringan Matahari saat tengah hari di Alexandria dan Syene (Aswan, Mesir).

Saringan Eratosthenes merupakan cara paling sederhana dan paling cepat untuk menemukan bilangan prima sebelum ditemukan Saringan Atkin pada tahun 2004. Saringan Atkin merupakan cara yang lebih cepat, namun lebih rumit dibandingkan dengan Saringan Eratosthenes. Misalkan kita akan menentukan semua bilangan prima antara 1 sampai n menggunakan Saringan Eratosthenes, langkah-langkahnya adalah
1.       Tulis semua bilangan antara 1 sampai n, sebut daftar A.
2.       Buat daftar yang masih kosong, misal daftar B.
3.       Coret bilangan 1 dari daftar A.
4.       Tulis 2 pada daftar B, lalu coret 2 dan semua kelipatannya dari daftar A.
5.       Bilangan pertama yang belum dicoret dari daftar A (misalnya 3) adalah bilangan prima. Tulis di daftar B, lalu coret bilangan ini dan semua kelipatannya.
6.       Ulangi langkah 4 sampai semua bilangan di daftar A tercoret.
7.       Semua bilangan di daftar B adalah bilangan prima. kembali setelah berabad-abad berhenti.

Pada tahun 1640, Pieere de Fermat berhasil membuat Teorema Kecil fermat (Fermat’s Little Theorem) yang kemudian dibuktikan oleh Leibniz.
Pada abad XVII, penelitian terhadap bilangan prima dilanjutkan Euler. Lama setelah itu, Euler menemukan kekurangan pada teorema ini. Seorang matematikawan Perancis, Marin Mersenne (1588-1648) kemudian membuat suatu bentuk baru dari bilangan prima yang diberi nama bilangan prima Mersenne (Mersenne Prime). Cara penentuannya pun belum sempurna karena diantaranya terdapat beberapa prima semu.
Sampai abad XIX, masih banyak matematikawan yang beranggapan bahwa 1 adalah bilangan prima, dari definisi bilangan prima adalah bilangan yang habis dibagi 1 dan bilangan itu sendiri tanpa membatasi jumlah pembagi. Pada abad XIX, Legendre dan Gauss membuat sebuah konjektural untuk menghitung banyaknya bilangan prima yang kurang dari atau sama dengan suatu bilangan dan dibuktikan pada tahun 1896 dan berganti nama menjadi Teorema Bilangan Prima (Prime Number Theorem). Sebelumnya pada tahun 1859, Riemann juga mencoba membuktikan konjektural tersebut menggunakan fungsi zeta.
Pencarian bilangan prima terus berlanjut. Banyak matematikawan yang meneliti tentang tes bilangan prima. Sebagai contoh, Pepin’s test untuk bilangan Fermat (1877), Lucas-Lehmer test untuk bilangan Mersenne (1856), dan Lucas-Lehmer test yang digeneralisasikan.
Pada abad XX, penggunaan bilangan prima di luar bidang matematika mulai dikembangkan. Pada era 1970-an, ketika konsep kriptografi ditemukan, bilangan prima menjadi salah satu dasar pembuatan kunci algoritma enkripsi seperti RSA.

Banyaknya bilangan prima tak terhingga, berapa pun banyaknya kita menghitung, pasti akan menemukan bilangan prima. Hal ini menjadi teka-teki, jika mengingat bilangan prima tidak dapat dibagi oleh bilangan lainnya. Salah satu hal yang menakjubkan adalah dalam era komputer, kita memberikan kodetifikasi untuk semua hal yang penting dan rahasia dalam angka jutaan bilangan-bilangan yang tidak habis dibagi oleh angka lainnya. Ini diperlukan karena dengan penggunaan angka lain, kodetifikasi tadi dapat dengan mudah ditembus.
Fenomena inilah yang ditemukan oleh ilmuan dari Duesseldorf (Dr. Plichta), sehubungan dengan penciptaan alam, yaitu distribusi misterius bilangan prima. Para ilmuan sudah lama percaya bahwa bilangan prima adalah bahasa universal yang dapat dimengerti oleh semua makhluk sebagai komunikasi dasar. Bahasa ini penuh misteri karena berhubungan dengan perencanaan universal kosmos.